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COUPLED SIMULTANEOUS HEAT AND MASS TRANSFER
IN MULTICOMPONENT TWO-PHASE MIXTURES

L. P. Kholpanov, E. Ya. Kenig, UDC 536.423.4:532.522.2
and V. A. Malyusov

A method is proposed for calculating the parameters of simultaneous heat
and mass transfer in a multicomponent two-phase gas—1liquid system, this
method being based on solving the system of differential equations of con-
vective heat transfer and convective diffusion.

An important item in research concerning heat- and mass-transfer processes is develop-
ment of a theory for simultaneous heat and mass transfer in multicomponent two-phase mix-
tures. Particular attention is paid to solution of this problem as a coupled one.

A method of solving such problems will be outlined here on the example of heat and
mass transfer in a multicomponent two-phase gas—1liquid system which flows through a verti-
cal channel in the descending parallel-flow mode.

Let the x axis run along a channel wall and the y axis run perpendiclar to it. The
thermal diffusivity of each component and the coefficients of multicomponent diffusion are
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assumed to be independent of the temperature and the concentration at any time [1-3]. We
will consider the case of steady-state heat and mass transfer with negligible resultant
diffusional transfer of enthalpy within the volume of phases, with both liquid and gas flow-
ing at mean rates, and with the parameters of both phases changing much slower in the longi-
tudinal direction than in the transverse one. We will also assume that the dissipative
term in the equation of convective heat transfer and thermodiffusional mass transfer can be
disregarded [4], and that the film thickness changes neither in the longitudinal direction
nor in the transverse one during the heat and mass transfer process. On this premise, then,
the system of equations of convective mass transfer and heat transfer is

T O, 5
T L e ()TG:%(J 07‘“(; ’
0 oy* (1)

X 0y? ox

dC d*C aC 0°C
i 2L == [D ] L . U G —_ D _Y¥G
L ox L oy* G ox (bd dyr

The boundary conditions are stipulated in the form of the following relations at the channel
entrance x = 0

Ty =Ty, Te=Toy C =0y Cc=0p. | (2)
at the pipe wall y = 0
To=To. € =0y, (3)
and at the pipe axis y = R
TG=TCG, CG=COG- (4)

At the interphase boundary y = h, are satisfied the conditions of phase equilibrium,
heat balance, and mass balance

T=T,=T.
L G (5)
Ce="m.Cp+pT + b
g, =act ¥ JibH, 6)
=1
where
Ji=d =g, i=1,2 ..., 0 (N
With the aid of the identity :S J;=0. , one can transform condition (6) into
i=1
n—1 . -
g =gt 2 J:AH; where AH; = AH;, — AH,. (8)

oy
Using Fourier's law and the generalized Fick's law, we obtain from expressions (7) and (8)
the balance relations at- the interphase boundary in the form

a0 3 96 4 amyipy (9)
dy dy dy
oy, oCq .
D = [D .
D11 3 1Dy 3 (10)

The matrices [Dg] and [D;] in the system of equations (1) contain coefficients of
molecular diffusion for the vapors of mixture components. Expressions for the elements of
both matrices can be derived from the molecular theory of gases [1-5]. An important pro-
perty of these matrices is their reducibility to diagonal form [1]

(605 1Gf = "Dy, ILIH[Dy 1L} = Dj . (11)
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The system of equations (1) with boundary conditions (2)-(5) and (9)-(10) is a coupled
system of parabolic equations with boundary conditions of the fourth kind, thus a rather
difficult one to solve. We therefore utilize properties (11) of the matrices [Dg] and [Dy]
and transform the original system of equations into

oT 0T oT 0T,
u, Ll =g L & G:%G G.,
ox dy 0x Jy
€y .. ¥ g PC (12)
U = D gp Moy T T
with N ,
At x = 0 we have
T, =T, o= Tog. C, = C(;L., Co= Cog. (14)
where C',p, = [L17%Cqop, C'og = [G]7'Cyg.
At =0 . .
Y T =Ty, © =Cop. 15
At y =R
TG == TOG' CG: Cog- (16)
At v = h,
T, =To="T, Ce=I[RICL+pTp,
. o), . aCg T, Tz | 1€y (17
Dy = Dp, —Z = . )
[R2] L ay DG BL/ ) }\L ay }"G ay - T ay )
where
p; = [GI'p; p; =I[GI"'py ] =(AM)T[D TILL; (18)

[R = [GI"*"m_ 1Ll [Re] = [GIT*[L].

Let y, =y in the 0 < y € hy range and y, = y in the hy, < y < R range, whereupon we
introduce dimensionless coordinates n, and n, according to the relations

I R —y,
=1 , =] —
h I, Tg R—h,
Then the system of relations (12)-(17) finally becomes
oT 02Ty = oT 0T,
= =YL L ; & = YrG oG
ox any ox onz
L 9°Cy ’ 9*C
oC e } , G = TG, QG’ (19)
dx on ox ans
where D L
S A ¢ B ISPV P
vrL i, 1 + Ve t (R — hy)* L u, hg 6 ud R—hy)?
At x = 0 we have
T =To, Tg=To. CL=Cy, Cg= Co. (20)
at n; =1
T, =Top, €p=0Co, (21)
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To=Tog, Co= G,

T, =Te=T, C=IRICy+ piT +ps, (22)
Tg  R—hy , 9T, | R—hy 7 0Cy 23
O Ty kT ol e e e T (23
. 0C R—p ,
Dg,—L — "M p
S Sn, o IR TDL e am : (24)

We will solve Egs. (19) in the boundary-layer approximation, assuming that the main changes
in concentrations C'yy, C'gy and temperatures Tp, Tg of components occur within layers ad-
jacent to the interphase boundary, considering also that those functions are bounded

T =a, +b 5 exp (—¥) d¥, T, =a,+ b, \ exp (—¥?) d¥,
0

L
0
BT 297 (25)
CI:.i‘ Ay -+ By S —¥*) dV¥, C(;i’: Ay 4 By s exp (—¥*) d¥,
0 0
where
N Ui ; T . i
Wy = ———e—| Wy, = = 4y T e,
ooy Vr X ooy Y16* ' 2V r
ZZ: 2 - 7]2 N i:I, 2, “ ey n—"'l.
V va

For determining the integration constants a;, a,, by, by, A4, Azi, Byy, By, we will use
initial and boundary conditions (20), (22)~(24), considering that
l/_' o~ E2
TDL —a1+b —a 106202 +b2V2 ]

Va
2 E]

G =a=a A=[R]A+pq- p;,

Vn (26)

CoL=A; -+ B, Cog=A, + B, L

r

, U
by = — —Z——Ié— {rsby — el ("Dy ) %%By}, By— — ‘ —ulé;— [Rs] By, (27)
where
. V7G—7‘L 1/7@‘ , ,
fo = ——m——Z s = : = ("D )0.5 (0D . 0,5
3 ]/r———%L 7\C A )LG [Ral ( G) [Rz]( L ) (28)

by virtue of the assumptions regarding the functions C'pi, C'gi, Ty, Tg. The solution to
the system of algebraic scalar-vector equations (26)~(27) will be obtained in the form

u - 5101 (@ - D ;
. uLG rarl ("D )03 19 (@ + piTop + p2) + AT, (29)
1 i k4
& L+o i/ —L= rrl ("D Ly 19 p]
—
by, = by -— V-% ATy, ay=ay=T . 2‘“ 1>
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2 - . , | g
B, - [Qj{ ]/ = (o -+ pJTOL + p2) — Pib }» B, « — / “ZL‘ [R; IBy,
¢

vV n e

A, - CoL— By, A, - Co o v2 B,, (30)

where

N\ —1

.,
(9] = (1/ G R+ (R

v—1
F

| 5 @ =[RlCoy — Cic. (31)

Expressions (29)-(31) together with expressions (25) make it possible to determine the tem-
peratures Ty, Tg and to convert the concentrations C'y, C'g for any values of the coordinates.

It is now necessary to change back to real values of concentrations Cj, Cg. Such a tran-
sition can be made with the aid of relations (13).

We introduce the notation

@y @

St (6 ) = | exp(—WHd¥, Sy, ny) = [ exp(—P¥)d¥,
0 0
. Z}i 221
SLi(e ) = | exp(—¥HdY, Kily, m) = | exp(—¥?)dv.
0 o

Then expressions (25) with the aid of notation (30) become

Tu (6 m) = Tot + [ Syt m)— 257 )b,, (32)
Y — n yom
TG(x, M) = TG (Skﬂx,ng——- 3 >bm (33)
CL (x, m) = Cor + (*Sf_.— Lz fu) B,, (34)
: ]~ v.-' ’ 1'—‘%— - \\B
%(xv n‘l) - COGT SG'J - 2 [_/ 2. (35)
Now using relations (13) we obtain from expressions (34) and (35)
) S R
R (L ([SG(x, wl— Y™ 1) a8, (37)
where
[, (o m)l = [LI7SL IS [Selx, mo)l = (G S6. (G-
Upon performing the transformations
2 - .
=] Q -1 [ ; - ! .
(L1B, = [LI[Q((C] IGJ{ T e e Tt ) —p; bl} S == 101Ag), (38)
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[G]B, = —|G] l/ uI;; [Ry] By = — I/“Z‘Lg (D=2 1D I (L] B, IQT R O R I (. T
where
(0] - ( - 1D D fm_\)_1
(ACy)r = "m Coyp, — Co+ Py Top, + Py — —VTT————plbl, (39)

and inserting the result into expressions (36) and (37), we obtain

2 : 40
€L (s, )= G+ (2= IS, =L (] (4G, (40
2
Co(x, M) == Gyt ( V= [Sglx, M)l — r1_.1) (Tm_ D] — 1 _)(ACy)r. (41)
An analogous procedure will reduce expression (29) to
u, Voug .
y 2 ) 7 BB IDLIP3 (O ("m_Cyy, — Coct piTay, + P+,

T C (a2

ui, ]ffTC:

I+ ¢ e e (AH) (D, 1°-%[@] py
G

and thus to one not containing intermediate quantities, more convenient for direct calcula-

tions.

The obtained expressions (32)-(33) and (40)-(41) make it possible, therefore, to deter-
mine the temperature fields and the concentration fields in both liquid and gaseous phases,
namely the temperature and the concentration at-any point (x, n;) or (x, n,) in the regions
x>0,0<n, <1, 0<n, <1.

Knowing both temperature and concentration distributions in each phase, one can deter-
mine heat and mass fluxes of the mixture components at the interphase boundary. For this
purpose one has to differentiate expressions (32) and (34) at the point n, = 0, which yields

—Q—ZL——- provet bl ) aCLL :-——Bi—‘_lz—_'—, l:l, 2, ey /7—1.
oy a0 2V yrix oy Iny=0  2VyLx

Then the heat flux is

/4

7= 79 l/ X by,

and the mass flux is

J = ;— l//—LiL_ (rDLJ)O.SBI'

with B, and b, defined by expressions (30) and (42), respectively.

A change to real fluxes J, with the aid of the obtained expression (38) for (L]B,
yields

, T n
=LY = I/ ﬂljv [Dy 199 [(PJ{AC)r,
with [@] and (AC,)7 defined by expressions (39).

Equivalent expressions for the fluxes can be obtained also from Eqs. (33) and (40)
for the gaseous phase.
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NOTATION

T, temperature of the mixture; C, vector of molar concentrations of the mixture compo-
nents; C', vector of concentrations converted according to relations (13); [D], matrix
of multicomponent diffusion coefficients; D'y, a diagonal matrix of eigenvalues of matrix
[Dl; [G] and [L], fundamental matrices for the gaseous component and the liquid component,
respectively; A, thermal conductivity; «, thermal diffusivity; q, heat flux; J, vector of
diffusion fluxes of the mixture components; Mmj, p,, Py, parameters in the equilibrium re-
lation (5); AH;, difference between molar enthalpies of the i-th component in the gaseous
phase and in the liquid phase, respectively, carried by its mass flux across the inter-
phase boundary; n, number of mixture components; h,, thickness of the liquid film; R, pipe
radius; u, velocity of the phases in directional motion; t, x, y, space coordinates; n;,n,,
dimensionless coordinates; and I, unit matrix. Subscripts i refers to the i-th compo-
nent; L, liquid phase; G, gaseous phase; and 0, value of a quantity at the boundary.
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CRITERION FOR THE BREAKUP OF LIQUID DROPS AND JETS

V. B. Okhotskii UDC 532,529

The conditions of the breakup of liquid drops and jets are determined using
wave theory.

The breakup of liquids is accomplished pneumatically, in particular, for the intensifi-
cation of physicochemical processes in engineering. The mechanism of this process has been
studied in many investigations, much of which has been systematized in [1-3]. It has been
established that irregularities of the wave type develop on the surface of a liquid with
the motion of a gas stream relative to it. These travel and increase in size, separating
from the liquid surface and being converted into drops of smaller size than the initial
volume of liquid. Since no significant difference in the conditions of liquid breakup is
noted with variation of the position of the gas—1liquid interface in space, it can be as-
sumed that the waves have a capillary nature, and the theory of the development of these
waves at a gas—liquid interface {4] can be used.

Let us assume that capillary waves develop on the surface of a volume of liquid at its
frontal point when a gas stream impinges on it. Their amplitudes grow with time and over
the period Tgr they become comparable with the wavelength o ® A, and according to [4] this
leads to separation of the wave from the surface of the liquid, i.e., to the breakup of its
original volume. Since the waves move over the surface of the volume of liquid, it is ob-
vious that such breakup becomes possible if the growth time of at least one wave is less
than the time tp, of its motion over the surface of the volume. On the other hand, it is
necessary that the length of at least one wave be less than the characteristic size £ of the
volume of liquid being broken up.
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